
This is a follow-up to my previous post https://shuangrimu.com/posts/elm-extensible-unions.
html

Since then there’s been quite a lot of discussion on the Elm Discourse thread (https://discourse.
elm-lang.org/t/idea-extensible-union-types-and-benefits-they-bring-for-real-world-elm-code/

6118) about all this. In particular Evan Czaplicki replied there asking for more formal treatment of the
informal type system I laid out in my previous post.

This post gives that. In order to write out the typing judgments effectively I’ve used LaTeX to
generate a PDF instead. This PDF will be a fairly abbreviated treatment of the issue. In particular I’ll
be assuming familiarity with the formal treatment of the Hindley-Milner type system as well as familiarity
with Daan Leijen’s paper “Extensible records with scoped labels”, which forms the theoretical basis of
Elm’s type system. You should definitely have the latter paper by your side while reading this, as I will
constantly be making references to notation and examples in Leijen’s paper.

If that sounds scary to you don’t worry! This is just a demonstration of the formal foundations of the
ideas presented in https://shuangrimu.com/posts/elm-extensible-unions.html. If you understood
that post just fine, this PDF does nothing more than show that my assertions in that post are formally
justified. On the other hand, if you are interested in a more approachable look at this topic, please
let me know on the Elm discourse! I can try to carve out some time to write a more in-depth article
covering the basics of type systems and type inference aimed at people who are not familiar with the
formalization of those concepts, but are familiar with Elm.

This PDF is mainly aimed at people like Evan who are already familiar with these concepts and
would just like to see how my pseudo-Elm from my earlier post maps onto these formal concepts.

In particular this document is about

• Showing the correspondence between my pseudo-Elm and the above formalisms.

• Providing worked examples of type checking and type inference according to these formalisms
justifying my informal assertions of why certain expressions are given certain type signatures

In the interest of continuity I haven’t made any syntax changes from my previous post (despite some
excellent suggestions from contributors in the Discourse thread).

Given the close relationship between extensible unions and extensible records, it’s no surprise that
Leijen’s paper actually mentions and provides a formalism for extensible unions as well (see section 5 of
the paper ”Variants,” remember another name for extensible unions is polymorphic variants). In fact
extensible unions uses the exact same type mechanism as extensible records! Typechecking and type
inference proceed identically1.

The split in type behavior arises solely from restricting which primitive functions are available for
extensible records vs which primitives are available for extensible unions.

So luckily all the hard work is done for me! The correspondence between my pseudo-Elm and the
formalisms presented in Leijen’s paper is a straightforward desugaring.

N.B. from here on our I will be referring to extensible unions (such a name being chosen to be
consistent with Elm’s own naming conventions) instead as polymorphic variants because the latter is
much more prevalent in CS literature and indeed is the terminology used by Leijen.

I won’t provide a formal treatment for the desugaring (I’m pretty sure that would be overkill, but
feel free to email me if you believe otherwise), instead I’m going to take the examples from my ”What
are extensible union types” section and write out the full typechecking and type inference process for
them.

In particular we’ll be using the following pseudo-Elm code from my previous post. Hopefully that is
sufficiently illustrative of the desugaring process to convince readers that in fact I am using no new ideas
apart from those already presented in Leijen’s paper.

regularUser : a or @RegularUser Int

regularUser = @RegularUser 0

adminUser : a or @AdminUser String

adminUser = @AdminUser "admin"

1In fact one possible implementation of polymorphic variants is to simply provide Leijen’s set of primitive functions,
and then use an opaque wrapper type around Elm’s usual records that cannot be unwrapped by normal user-land code.
This requires absolutely no changes to Elm’s type system. The only hard-coded change required in the compiler is the
addition of the primitive functions. Of course there are various losses in developer ergonomics such as the quality of type
messages in that approach, but it serves as an illustration that there is fundamentally nothing new going on at the type
level.

1

https://shuangrimu.com/posts/elm-extensible-unions.html
https://shuangrimu.com/posts/elm-extensible-unions.html
https://shuangrimu.com/posts/elm-extensible-unions.html
https://shuangrimu.com/posts/elm-extensible-unions.html
https://discourse.elm-lang.org/t/idea-extensible-union-types-and-benefits-they-bring-for-real-world-elm-code/6118
https://discourse.elm-lang.org/t/idea-extensible-union-types-and-benefits-they-bring-for-real-world-elm-code/6118
https://discourse.elm-lang.org/t/idea-extensible-union-types-and-benefits-they-bring-for-real-world-elm-code/6118
https://discourse.elm-lang.org/t/idea-extensible-union-types-and-benefits-they-bring-for-real-world-elm-code/6118
https://discourse.elm-lang.org/t/idea-extensible-union-types-and-benefits-they-bring-for-real-world-elm-code/6118
https://discourse.elm-lang.org/t/idea-extensible-union-types-and-benefits-they-bring-for-real-world-elm-code/6118
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/scopedlabels.pdf
https://shuangrimu.com/posts/elm-extensible-unions.html
https://shuangrimu.com/posts/elm-extensible-unions.html

regularUser1 : @RegularUser Int or @AdminUser String

regularUser1 = regularUser

toInt : @RegularUser Int or @AdminUser String -> Int

toInt user = case# user of

@RegularUser x -> x

@AdminUser str -> length str

thisTypeChecks : Bool -> a or @RegularUser Int or @AdminUser String

thisTypeChecks bool = case bool of

True -> regularUser

False -> adminUser

thisTypeChecksToo : @RegularUser Int or @AdminUser String or @SomeOtherTag Bool

thisTypeChecksToo = thisTypeChecks True

-- This was not in the original post , but serves a usual example of how an

-- extensible type variable interacts with a concrete input type in a function.

myInt : Int

myInt = toInt adminUser

-- This is a type error and is used mainly to demonstrate that the type errors

-- I presented in my post do in fact happen

failsToCompile : @RegularUser Int or @AdminUser String -> Int

failsToCompile user = case# user of

@AdminUser str -> length str

I mean to show that Leijen’s formalism agree with the following characteristics.

1. Functions built with case expressions result in a concrete (i.e. monomorphic) input type

2. Exhaustivity checking still occurs in case matches

3. Type inference agrees with the type signatures presented

Again, I’ll be assuming a standard Hindley-Milner (HM) type system on top of which we bolt Leijen’s
additional record system. This neatly models Elm type system with only a few minor variations. If people
are interested are in these variations please let me know! I can include them, but for now I’ll leave them
out since they don’t affect the core of the idea behind polymorphic variants.

Although I will generally hew very closely to Leijen’s formalism, to highlight case match exhaustivity
I will introduce a new primitive function caseMatchF inished for variants. Note that this is merely a
more restricted version of Leijen’s error function. I include it here to explicitly model Elm’s promise
of no runtime exceptions. caseMatchF inished allows us to follow Leijen’s method of desugaring case
statements without introducing something that looks operationally like a runtime exception. It also
helps us infer closed row types in the input type of a case match statement2.

caseMatchF inished :: ∀α∗.〈 L M 〉 → α∗

Note that this is a function that has no runtime evaluation significance because of its input type
〈 L M 〉. There is no way of generating a value of type 〈 L M 〉 outside of using Leijen’s variant decomposition
function l ∈ ? : (which in turn only appears in case matches). However, that means we can only
call caseMatchF inished when we’ve handled all other cases. In otherwords, at runtime we actually
never call caseMatchF inished, it is purely a compile-time artifact. Hence caseMatchF inished can be
given an arbitrary runtime implementation.

For simplicity’s sake, instead of doing a full treatment of (closed, non-row-based) algebraic datatypes
at the type level, I will assign a hard-coded primitive function that follows the usual function-based
encoding3 of algebraic datatypes, to be used in every case match instance.

2Assuming that Leijen intended error to be of type ∀α∗.String → α∗, then Leijen’s showEvent would be inferred as
∀rrow.〈key :: Char,mouse :: Point | rrow〉 → String (α∗ unifies to a function type with an input variant type unlike in
caseMatchF inished where the input is already a variant type) if it had not been annotated with a closed row type. This
is a rather poor type signature for runtime safety, however, since any variant not tagged as key or mouse would hit the
error branch and cause a runtime error!

3Technically a Boehm-Berarducci encoding, but since we don’t have any recursive datatypes, all the usual function-based
encodings based off of Church encodings work and agree.

2

Luckily in the pseudo-Elm code there is only one such instance, namely the case match on a boolean
type. So we substitute instead the following function for the case match on a boolean type.

boolMatch :: ∀α∗.Bool→ α→ α→ α

The intended runtime interpretation of this function is that the first α is chosen if Bool is True
otherwise the second α is chosen if Bool is False.

Also, not included in the pseudo-Elm code, but something worth pointing out is that variant tags
introduced by @ uniformly desugar to Leijen’s variant injection function. That is for @SomeTag, Leijen’s
equivalent formalism is

〈SomeTag = 〉 :: ∀αrrow.α→ 〈 LSomeTag :: α | r M 〉

With that in mind let’s present the full desugaring of our pseudo-Elm. I follow almost exactly Leijen’s
own desugaring, in Section 5 of his “Extensible records with scoped labels” paper. In particuar, I follow
his method of desugaring a case match in his Morrow language into a series of nested ∈ applications.
The only difference we make, as I noted earlier, is to replace his use of error with caseMatchF inished.

regularUser :: ∀rrow.〈 LRegularUser :: Int | rrow M 〉
regularUser = 〈RegularUser = 0〉

adminUser :: ∀rrow.〈 LAdminUser :: String | rrow M 〉
adminUser = 〈AdminUser = “admin”〉

regularUser1 :: 〈 LRegularUser :: Int | LAdminUser :: String | L M M M 〉
regularUser1 = regularUser

toInt :: 〈 LRegularUser :: Int | LAdminUser :: String | L M M M 〉 → Int

toInt user = (RegularUser ∈ user ? (\x→ x) :

(\user′ → (AdminUser ∈ user′ ? (\str → length str) :

caseMatchF inished)))

thisTypeChecks :: ∀rrow.Bool→ 〈 LRegularUser :: Int | LAdminUser :: String | rrow M M 〉
thisTypeChecks bool = boolMatch bool regularUser adminUser

thisTypeChecksToo :: Bool→ 〈 LRegularUser :: Int | LAdminUser :: String | L M M M 〉
thisTypeChecksToo = thisTypeChecks True

myInt :: Int

myInt = toInt regularUser

failsToCompile :: 〈 LRegularUser :: Int | LAdminUser :: String M M 〉 → Int

failsToCompile = AdminUser ∈ user′ ? (\str → length str) : caseMatchF inished

Note that although it is not defined in the original pseudo-Elm code, length has the following type
signature:

length :: String → Int

For type checking it is mostly sufficient to run the type inference algorithm sketched in Figure 2
of Leijen’s paper and verify that the types inferred agree with our annotated types up to bound type
variables (by the soundness of our inference algorithm we know that these types must then be correct).

3

The two exceptions are regularUser1 and thisTypeChecksToo, which are annotated with a more
specific type than is inferred. However, as we shall see, a simple use of the instantiation Inst rule from
HM is sufficient to prove that thisTypeChecksToo indeed has a valid type signature.

Leijen leaves unsaid the entire framework for type inference apart from unification, but we can use
the usual type inference method for HM-like systems. Of note, we will always first infer a monotype
before closing over all free type variables to form a polytype.

1. regularUser: Let’s begin by examining regularUser. It is an application of 〈l = 〉 to a single
argument4.

Given a fresh type variable β that we wish to solve for, we have the following constraint

α→ 〈 LRegularUser :: α | rrow M 〉 ∼ β → 〈 LRegularUser :: β | rrow M 〉

with an empty substitution set. One use of Leijen’s uni-app followed by a use of uni-varl yields
our unifier [β 7→ Int].

I introduce a new rule called uni-function which is just a specialization of repeated usages of uni-app
where we think of the function arrow → as a type constructor of two arguments.

τ1 ∼ τ ′1 : θ1 θ1τ2 ∼ θ1τ ′2 : θ2
uni-function:

τ1 → τ2 ∼ τ ′1 → τ ′2 : θ2 ◦ θ1

Although it can be derived from uni-app, it makes a lot of our resulting work easier to write out.

Because of the usual abuse of notation using proof tree notation to denote a procedural algorithm,
we will need to split up our unification over several different proof trees to show each step as it’s
run.

We first apply uni-function, where the first precondition is satisfied by uni-varl.

α∗ ∼ Int : [α∗ 7→ Int] [α∗ 7→ Int]〈 LRegularUser :: α∗ | rrow M 〉 ∼ [α∗ 7→ Int]β : ?
uni-function:

α∗ → 〈 LRegularUser :: α∗ | rrow M 〉 ∼ Int→ β : ?

After applying our substitution set [α∗ 7→ Int], we invoke uni-varl again.

α∗ ∼ Int : [α∗ 7→ Int]

〈 LRegularUser :: Int | rrow M 〉 ∼ β :

[β 7→ 〈 LRegularUser :: Int | rrow M 〉]
uni-varl: 〈 LRegularUser :: Int | rrow M 〉 ∼ β : ?

uni-function:
α∗ → 〈 LRegularUser :: α∗ | rrow M 〉 ∼ Int→ β : ?

And cascading our substitution set down yields our final proof tree.

α∗ ∼ Int : [α∗ 7→ Int]

〈 LRegularUser :: Int | rrow M 〉 ∼ β : [β 7→ 〈 LRegularUser :: Int | rrow M 〉]
〈 LRegularUser :: Int | rrow M 〉 ∼ β : [β 7→ 〈 LRegularUser :: Int | rrow M 〉]

α∗ → 〈 LRegularUser :: α∗ | rrow M 〉 ∼ Int→ β : [α∗ 7→ Int, β 7→ 〈 LRegularUser :: Int | rrow M 〉]

That gives us our final unifier of

[α∗ 7→ Int, β 7→ 〈 LRegularUser :: Int | rrow M 〉]

A single application of that unifier to β indeed yields the type signature

〈 LRegularUser :: Int | rrow M 〉

, showing that our annotated type signature for regularUser is indeed correct (after closing over
free type variables with HM’s generalization rule to generate the polytype

∀rrow.〈 LRegularUser :: Int | rrow M 〉

).

4It is indeed one argument, not two arguments, i.e. l itself is not an argument. This is because formally 〈l = 〉 is
a syntactic convenience that denotes a family of functions parametrized by l and is syntactically specialized to a single
function at a call site.

4

2. adminUser: The same procedure for regularUser suffices to show that our type signature for
adminUser is correct.

3. regularUser1: This follows by uni-varl. Alternatively, with a type signature for regularUser, a
single (kind-aware) use of the HM instantiation rule5 immediately yields regularUser1.

4. toInt: For toInt, we have a lambda abstraction rather than application. Following the usual HM
abstraction rule this means means at the top-level we introduce a fresh type variable γ with a new
typing environment Γ′ = Γ ∪ {bool : γ}6 that we use for the remainder of this expression.

The top-level of toInt, i.e.

(RegularUser ∈ user ? (\x→ x) : . . .)

is a lambda application that then proceeds in a similar fashion to the process laid out for regularUser.

The proof trees for toInt become extremely cumbersome to write out, so I’ll appeal to the reader’s
trust that we just alternate instances of HM’s abstraction rule introducing a new typing environ-
ment and the lambda application inference process laid out in regularUser.

The only point I wish to emphasize here is that toInt ultimately has no row type variables at the
top-level, i.e. we have entirely closed row types in toInt’s signature rather than any instances of
rrow. The reason behind this is caseMatchF inished, which forces an instantiation of the row type
variable introduced by nested ∈s to a L M , effectively “removing” the type variable.

5. thisTypeChecks: thisTypeChecks is mostly straightforward. Assuming that we already have the
types for regularUser and adminUser in our typing environment (whose types we’ll call R and
A respectively to make our proof tree size more manageable), we get the following series of proof
trees where νi is a fresh type variable for i ∈ {1, 2, . . .}.
We solve repeated partial applications from left to right. First partially applying to bool using
uni-function.

Bool ∼ Bool : [] (α∗ → (α∗ → α∗)) ∼ ν∗1 : [ν∗1 7→ (α∗ → (α∗ → α∗))]

Bool→ (α∗ → (α∗ → α∗)) ∼ Bool→ ν∗1 : [ν∗1 7→ (α∗ → (α∗ → α∗))]

Then we partially apply regularUser.

α∗ ∼ 〈 LRegularUser :: Int | rrow M 〉 : [α∗ 7→ 〈 LRegularUser :: Int | rrow M 〉] (α∗ → α∗) ∼ ν∗2 : ?

α∗ → (α∗ → α∗) ∼ 〈 LRegularUser :: Int | rrow M 〉 → ν∗2 : ?

Setting RUrrow = LRegularUser :: Int | rrow M to make the proof tree less intimidating:

α∗ ∼ RUrrow : [α∗ 7→ RUrrow] [α∗ 7→ RUrrow](α∗ → α∗) ∼ [α∗ 7→ RUrrow]ν∗2 : ?

α∗ → (α∗ → α∗) ∼ RUrrow → ν∗2 : ?

α∗ ∼ RUrrow : [α∗ 7→ RUrrow] (RUrrow → RUrrow) ∼ ν∗2 : [α∗ 7→ RUrrow, ν∗2 7→ RUrrow → RUrrow]

α∗ → (α∗ → α∗) ∼ RUrrow → ν∗2 : [α∗ 7→ RUrrow, ν∗2 7→ RUrrow → RUrrow]

This yields ∀rrow.RUrrow → RUrrow (after substitution for ν2 and closing over our free type
variables with ∀) as our inferred type after partial application of regularUser.

Finally applying adminUser is the one interesting part, since we have to make use of Leijen’s
uni-row rule, which up to now we haven’t seen. We’ll use the abbreviation

AUwrow = 〈 LAdminUser :: String | wrow M 〉

to again make the initial uni-function rule shorter.

5We need to extend the usual v specialization operator with Leijen’s ∼= operator but otherwise things remain the same.
6Γ is the implicit environment we’ve been carrying around that among other things includes the typings for l ∈ ? :

and caseMatchF inished.

5

RUrrow ∼ AUwrow : ? RUrrow ∼ ν∗3 : ?

RUrrow → RUrrow ∼ AUwrow → ν∗3 : ?

Focusing on running uni-row on RUrrow ∼ AUwrow : ? we get (after one invocation of uni-app
on the 〈〉 constructor strips us to bare row types) the following. I notate the three remaining
conditions we’re not yet using as B, C, and D to keep the proof tree manageable in size.

LAdminUser :: String | wrow M ' LRegularUser :: τ ′ | s′ M : ? B C D
uni-row:

LRegularUser :: Int | rrow M ∼ LAdminUser :: String | wrow M : ?

To solve for LAdminUser :: String | wrow M ' LRegularUser :: τ ′ | s′ M : ? we first run row-swap.
We leave τ ′ as is and match s′ to LAdminUser :: String | trow M for a new trow.

RegularUser 6= AdminUser wrow ' LRegularUser :: τ ′ | trow M : ?
row-swap:

LAdminUser :: String | wrow M ' LRegularUser :: τ ′ | LAdminUser :: String | trow M M : ?

Solving for rrow ' LRegularUser :: τ ′ | trow M : ? requires an invocation of row-var.

fresh(τ ′) fresh(trow)
row-var:

wrow ' LRegularUser :: τ ′ | trow M : [wrow 7→ LRegularUser :: τ ′ | trow M]

. This then lets us fully solve row-swap.

RegularUser 6= AdminUser
wrow ' LRegularUser :: τ ′ | trow M :

[wrow 7→ LRegularUser :: τ ′ | trow M]
row-swap:

LAdminUser :: String | wrow M ' LRegularUser :: τ ′ | LAdminUser :: String | trow M M :

[wrow 7→ LRegularUser :: τ ′ | trow M]

We then bubble up to uni-row. I’ll use the abbreviation W = [wrow 7→ LRegularUser :: τ ′ | trow M]
to make the proof tree easier to handle.

LAdminUser :: String | wrow M ' LRegularUser :: τ ′ | LAdminUser :: String | trow M M : W

tail(L M) 6∈ dom([wrow 7→ LRegularUser :: τ ′ | trow M])

WInt ∼ [wrow 7→ LRegularUser :: τ ′ | trow M]τ ′ : []

[](Wrrow) ∼ [](W LAdminUser :: String | trow M) : ?
uni-row:

LRegularUser :: Int | rrow M ∼ LAdminUser :: String | wrow M : ?

Now we need to solve for

[](Wrrow) ∼ [](W LAdminUser :: String | trow M) : ?

which reduces to solving for

rrow ∼ LAdminUser :: String | trow M : ?

which follows immediately from uni-varl as

rrow ∼ LAdminUser :: String | trow M : [rrow 7→ LAdminUser :: String | trow M]

yielding the following as our final proof tree for uni-row.

LAdminUser :: String | wrow M ' LRegularUser :: τ ′ | LAdminUser :: String | trow M M : W

tail(L M) 6∈ dom(W)

WInt ∼Wτ ′ : [τ ′ 7→ Int]

[τ ′ 7→ Int](Wrrow) ∼ [τ ′ 7→ Int](W LAdminUser :: String | trow M) : [rrow 7→ LAdminUser :: String | trow M]

LRegularUser :: Int | rrow M ∼ LAdminUser :: String | wrow M :

[rrow 7→ LAdminUser :: String | trow M , wrow 7→ LRegularUser :: τ ′ | trow M]

6

This leads to either

〈 LRegularUser :: Int | LAdminUser :: String | trow M M 〉

or
〈 LAdminUser :: String | LRegularUser :: Int | trow M M 〉

, depending on which side we choose to use the substitution set. This would ordinarily be a problem,
since unification is supposed to give equality, but they are equivalent under Leijen’s ∼= relation7.

6. thisTypeChecksToo: This one is pretty straightforward. Inference leads us to

〈 LRegularUser :: Int | LAdminUser :: String | L M M M 〉

. Then we are justified in annotating with the specialized type signature via HM’s instantiate rule.

7. myInt: Also pretty straightforward, follows a similar path to thisTypeChecks. We introduce
a fresh type variable δ which will ultimately be the inferred type of myInt. An application of
uni-function leads us to unify

〈 LAdminUser :: String | rrow M 〉 ∼ 〈 LRegularUser :: Int | LAdminUser :: String | L M M M 〉

. An application of uni-row followed by row-swap and row-var gives us the substitution set

[rrow 7→ LRegularUser :: γ | L M M]

which the third condition of uni-row then adds γ 7→ Int resulting in the final substitution set

[rrow 7→ LRegularUser :: Int | L M M]

. This unifies our function inputs in uni-function and our function output results in the substitution
set

[δ 7→ Int]

which agrees with our type annotation.

8. failsToCompile: This function will be inferred as 〈 LAdminUser :: String | L M M 〉 → Int. If we
try to unify failToCompile’s type annotation with the inferred type, an application of uni-function
ultimately will try to unify

LAdminUser :: String | L M M ∼ LRegularUser :: Int | LAdminUser :: String | L M M M

However, that will fail to unify in uni-row on row-swap, which will ask us to do the following
impossible rewrite.

L M ' LRegularUser :: Int | L M M

And that’s it folks! Please let me know in the Elm discourse thread if there’s anything else you’d like
me to show.

7In case you’re wondering, this is why Leijen mentions “ To use our framework with standard Hindley-Milner type rules
we need to make the implicitsyntactic equality between mono types explicit with our equality relation defined in Figure
1.” and gives the modified app example. This is what lets us confidently say that it doesn’t matter to the type system at
all which order we choose.

7

